5,011 research outputs found

    Flexible control techniques for a lunar base

    Get PDF
    The fundamental elements found in every terrestrial control system can be employed in all lunar applications. These elements include sensors which measure physical properties, controllers which acquire sensor data and calculate a control response, and actuators which apply the control output to the process. The unique characteristics of the lunar environment will certainly require the development of new control system technology. However, weightlessness, harsh atmospheric conditions, temperature extremes, and radiation hazards will most significantly impact the design of sensors and actuators. The controller and associated control algorithms, which are the most complex element of any control system, can be derived in their entirety from existing technology. Lunar process control applications -- ranging from small-scale research projects to full-scale processing plants -- will benefit greatly from the controller advances being developed today. In particular, new software technology aimed at commercial process monitoring and control applications will almost completely eliminate the need for custom programs and the lengthy development and testing cycle they require. The applicability of existing industrial software to lunar applications has other significant advantages in addition to cost and quality. This software is designed to run on standard hardware platforms and takes advantage of existing LAN and telecommunications technology. Further, in order to exploit the existing commercial market, the software is being designed to be implemented by users of all skill levels -- typically users who are familiar with their process, but not necessarily with software or control theory. This means that specialized technical support personnel will not need to be on-hand, and the associated costs are eliminated. Finally, the latest industrial software designed for the commercial market is extremely flexible, in order to fit the requirements of many types of processing applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth

    Fragmentation of electric currents in the solar corona by plasma flows

    Full text link
    We consider a magnetic configuration consisting of an arcade structure and a detached plasmoid, resulting from a magnetic reconnection process, as is typically found in connection with solar flares. We study spontaneous current fragmentation caused by shear and vortex plasma flows. An exact analytical transformation method was applied to calculate self-consistent solutions of the nonlinear stationary MHD equations. The assumption of incompressible field-aligned flows implies that both the Alfven Mach number and the mass density are constant on field lines. We first calculated nonlinear MHS equilibria with the help of the Liouville method, emulating the scenario of a solar eruptive flare configuration with plasmoids and flare arcade. Then a Mach number profile was constructed that describes the upflow along the open magnetic field lines and implements a vortex flow inside the plasmoid. This Mach number profile was used to map the MHS equilibrium to the stationary one. We find that current fragmentation takes place at different locations within our configuration. Steep gradients of the Alfven Mach number are required, implying the strong influence of shear flows on current amplification and filamentation of the MHS current sheets. Crescent- or ring-like structures appear along the outer separatrix, butterfly structures between the upper and lower plasmoids, and strong current peaks close the lower boundary. Impressing an intrinsic small-scale structure on the upper plasmoid results in strong fragmentation of the plasmoid. Hence fragmentation of current sheets and plasmoids is an inherent property of MHD theory. Transformations from MHS into MHD steady-states deliver fine-structures needed for plasma heating and acceleration of particles and bulk plasma flows in dissipative events that are typically connected to magnetic reconnection processes in flares and coronal mass ejections.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    MHD flows at astropauses and in astrotails

    Full text link
    The geometrical shapes and the physical properties of stellar wind -- interstellar medium interaction regions form an important stage for studying stellar winds and their embedded magnetic fields as well as cosmic ray modulation. Our goal is to provide a proper representation and classification of counter-flow configurations and counter-flow interfaces in the frame of fluid theory. In addition we calculate flows and large-scale electromagnetic fields based on which the large-scale dynamics and its role as possible background for particle acceleration, e.g. in the form of anomalous cosmic rays, can be studied. We find that for the definition of the boundaries, which are determining the astropause shape, the number and location of magnetic null points and stagnation points is essential. Multiple separatrices can exist, forming a highly complex environment for the interstellar and stellar plasma. Furthermore, the formation of extended tail structures occur naturally, and their stretched field and streamlines provide surroundings and mechanisms for the acceleration of particles by field-aligned electric fields.Comment: 10 pages, 4 Figure

    A GUIDEBOOK FOR BUILDING TEAM COHESION

    Get PDF
    Includes Supplementary MaterialHow can Army Special Operations Forces (ARSOF) quickly and effectively develop team cohesion given its fast-paced schedule, numerous competing requirements, and limited cognitive development resources? ARSOF units are often regarded as the most elite teams within the military, yet they lag in one critical area that the majority of high-performing teams implement regularly: team dynamics training. Consistently high-performing teams across the business and sports worlds recognize the importance of team dynamics training in improving team cohesion, which in turn enhances their team’s effectiveness. This capstone project identifies four foundational characteristics that high-performing teams build to achieve greater cohesion: communication, feedback, trust, and unified commitment. This project provides a guidebook with various tools and techniques to develop these four foundational characteristics. Using this guidebook, ARSOF tactical leaders will be able to build upon their unit’s cohesion as they strive to make their unit a more effective fighting force.Major, United States ArmyApproved for public release. Distribution is unlimited

    The multiplicity of massive stars in the Orion Nebula cluster as seen with long-baseline interferometry

    Full text link
    The characterization of multiple stellar systems is an important ingredient for testing current star formation models. Stars are more often found in multiple systems, the more massive they are. A complete knowledge of the multiplicity of high-mass stars over the full range of orbit separations is thus essential to understand their still debated formation process. Observations of the Orion Nebula Cluster can help to answer the question about the origin and evolution of multiple stars. Earlier studies provide a good knowledge about the multiplicity of the stars at very small (spectroscopic) and large separations (AO, speckle) and thus make the ONC a good target for such a project. We used the NIR interferometric instrument AMBER at VLTI to observe a sample of bright stars in the ONC. We complement our data set by archival NACO observations of \theta 1 Ori A to obtain more information about the orbit of the close visual companion. Our observations resolve the known multiple systems \theta 1 Ori C and \theta 1 Ori A and provide new orbit points, which confirm the predicted orbit and the determined stellar parameters for \theta 1 Ori C. Combining AMBER and NACO data for \theta 1 Ori A we were able to follow the motion of the companion from 2003 to 2011. We furthermore find hints for a companion around \theta 1 Ori D and a previously unknown companion to NU Ori. With a probability of ~90% we can exclude further companions with masses of > 3 Msun around our sample stars for separations between ~2 mas and ~110 mas. We conclude that the companion around \theta 1 Ori A is most likely physically related to the primary star. The newly discovered possible companions further increase the multiplicity in the ONC. For our sample of two O and three B-type stars we find on average 2.5 known companions per primary, which is around five times more than for low-mass stars.Comment: accepted by A&

    The Experience of Insight Facilitates Long‐Term Semantic Priming in the Right Hemisphere

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/156008/1/jocb374.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/156008/2/jocb374_am.pd
    corecore